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Two convergence results related to the approximation of the Boltzmann equa- 
tion by discrete velocity models are presented. First we construct a sequence of 
deterministic discrete velocity models and prove convergence (as the number of 
discrete velocities tends to infinity) of their solutions to the solution of a 
spatially homogeneous Boltzmann equation. Second we introduce a sequence of 
Markov jump processes (interpreted as random discrete velocity models) and 
prove convergence (as the intensity of jumps tends to infinity) of these processes 
to the solution of a deterministic discrete velocity model. 

KEY WORDS: Boltzmann equation; discrete velocity models; weak con- 
vergence; random mass flow. 

1. INTRODUCTION 

We cons ide r  the spat ia l ly  h o m o g e n e o u s  B o l t z m a n n  e q u a t i o n  (cf. ref. 6, 

p. 26, or  ref. 3, p. 392) 

o t P ( t , v ) =  dw 2 d e B ( v , w , e ) [ p ( t , v * ) p ( t , w * ) - - p ( t , v ) p ( t , w ) ]  (1.1) 

wi th  the init ial  c o n d i t i o n  

p(O, v )= po(v) (1.2) 

The  symbols  dw and  de deno te  the Lebesgue  measu re  on  the th ree -d imen-  

s ional  Euc l idean  space ~ 3  and  the un i fo rm surface measu re  on  the uni t  

sphere  ~ 2 ,  respect ively.  The  func t ion  B is cal led the col l is ion kernel.  The  

objects  v* and  w* are  def ined as 

v* = v + e(e, w - v), w* = w + e(e, v - w) 
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where v, w e ~  3, e ~ S# 2, and (., .) denotes the scalar product. They are 
interpreted as the postcollision velocities of two particles with the precolli- 
sion velocities v and w. Equations (1.1)-(1.2) describe the time evolution of 
a probability density function p(t, v) on the velocity space ~3. 

The purpose of this paper is to study the problem of approximating 
the measures 

2(t, dr) = p(t, v) dv 

which correspond to the solution of the Boltzmann equation (1.1)-(1.2), by 
measures concentrated on a finite subset of the velocity space. 

The investigation will be carried out in the following more general 
setup. Let (~ ,  r) be a locally compact, separable metric space (r denoting the 
metric) and N'~, denote the Borel a-algebra. Let B(Y') be the Banach space 
of bounded Borel measurable functions on Y' with 11~011 = s u p : ~  [~o(z)[, 
and let C(.~) denote the subspace of bounded continuous functions. 
Furthermore, let Jg(.~) be the space of finite, positive measures on 
(Y', ~ , ) .  

Let Q be a function on Y' x ~ x ~ .  x 03~r with the properties 

Q(zl,z2,.,F),Q(zl,z2, F, . )~J[(~) ,  V z l , z 2 ~ ,  F e ~ .  (1.3) 

Q(' , . ,F~,F2)~B(~x.~),  'r (1.4) 

and 

Q(Zl,Z2,.~,LZ)<-%CQ . . . . .  VZI, Z2 E"~ (1.5) 

We consider the equation 

"L dt q~(z),~(r, az) 

Q(Zl, z2, dS,, d52)}2(t, dzl) 2(t, dz2), 2(0) = 20 (1.6) 

where q~ ~ B ( ~ )  and 20 e J t ' (~) .  The solution 2(0 is a function of the time 
variable t~ [0, co) taking values in J [ ( ~ ) .  

First we note that Eq. (1.6) is a generalized weak form of the 
Boltzmann equation (1.1)-(1.2). "2,t~ To see that, one considers y,=~?3,  
and the collision kernel Q of the form 

Q(Vl,Vz, Fl ,F2)=f  �89 e)6,?(Fl)6v~(Fz)de (1.7) 
,9o2 
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where 

v*=v~ +e(e, v2-v l ) ,  v* =v2+e(e, v~-v2) (1.8) 

and 6~ denotes the Dirac measure concentrated in z. The integral with 
respect to Q on the right-hand side of Eq. (1.6) takes the form 

I9"- �89 e)[<p(v*) + r -- (P(Vl) -- q0(v2)] de V2) 

After the substitution of the integration variables (Vl, 02) by (v*, v*) and 
removing the test function ~0, one obtains Eqs. (1.1)-(1.2) provided that the 
kernel B has the properties 

B(vl, v2, e) = B(v2, vl, e) = B(v*, v*, e) 

Next we consider Eq. (1.6) in the case ~ =.~(N), where 

~a(N)_~. {~(l N} ..... ~(NN)}, =i~(N)~3)  i =  1 ..... N 

The solution 2(g)(t) is determined by its values 2(g)(t, {GIN)})=: plg)(t), 
i = 1 ..... N. Considering the functions 

~o,,(v)=�82162 m = l  ..... N 

where � 8 2  denotes the indicator function of a set F, shows that Eq. (1.6) is 
equivalent to the system of ordinary differential equations 

N 
d {N) (g) - -  + ~o,,a~ , , - -  ~o,,,(~; ) - -  ~0, , , (r  at p ' '  (t)= ~ [r ,r(N)~ 

i , j , k , l =  l 

(N)  (N)  I~(N) •  (~, , {~N)},{~IN)})plm(t)p~U)(t) (1.9) Sj  , 

(N) p,, (0) = 2(oN)({ ~(N)}), m = l  ..... N (1.10) 

Moreover, one easily realizes that the system (1.9)-(1.10) is equivalent to 
the system 

d (U) p, (t) 

N 

= E 
j , k , l ~  [ 

(ct(N)(k, l, i, j )  p~N)(t) plN)(t)--a(U)(i, j, k, l) plg)(t) p~U)(t) } 

(1.11) 

plN)(o) =),(oN)({~I.N)}), i= 1 ..... N (1.12) 
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where 

~uv)(i, j, k, l) 

= 2 - ~  ,'.i , - j  , + Q  (r , . i  , { r162  
+ (u) (m ~:(N) {r {r162 , })] Q (r , - j  , ~:(u) {r {r 

(1.13) 

The system (1.11 )-(1.12) is called a discrete velocity model (in the spatially 
homogeneous case). It describes the time evolution of the weight functions 
plm( t ) ,  which correspond to the "discrete velocities" ~I NI, i =  1 ..... N. We 
refer to refs. 10 and 12 concerning more details about discrete velocity 
models. 

In Section 2 we are concerned with the problem of approximating the 
solution 2(t) of the generalized Boltzmann equation (1.6) by measures of 
the form 

N 

i = I  

where 6 in the Dirac measure, and plm( t ) ,  i =  1 ..... N, is the solution to a 
discrete velocity model of the form (1.11)-(1.13). We construct an 
appropriate sequence (~e(NI, ~oNI, O~ul) and prove that 

iim sup O(2(t), ~tm(t ) )  = O, 
N ~ orj O <~ t <~ T 

V T > 0  

where O is a metric, which is equivalent to weak convergence in the space 
J r  

In Section 3 we study the problem of approximating the solution 
p lN)(t), i = 1 ..... N, of a discrete velocity model (1.11)-(1.13) by a stochastic 
process. We introduce a Markov jump process (giIU'y)(t));= l ,N  where 7 is a 
parameter governing the intensity of the jumps. The functions glN'~~ are 
interpreted as random weight functions, which correspond to the discrete 
velocities ~I N), i =  l ..... N. A model of such type was introduced in ref. 5 and 
called a random discrete velocity model. We prove that 

N 

lim E "sup ~ [plU)(t)--glN'~"(t)]=O, 
), ~ oc~ O <~ t <~ T i =  l 

VT>O 

where E denotes mathematical expectation. 
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. A CONVERGENCE RESULT FOR DISCRETE 
VELOCITY MODELS 

Let  {A~ N) ..... A(N N)} be a measurable partit ion of the space ~e into dis- 
joint cells, i.e., 

A IN) E . . ~ ,  zI{N) ~ (N)__ i , , J j  - - ~ ,  i , j = l  ..... N, i ~ j  

where ~ denotes the empty set, and 

N 
U ~(N)~ - - ~ ,  VN=I ,  2 .... 

i=1 

Let .~?(U) e -'iA(N), i= 1,..., N, and consider the space 

6~(N} = {~]N) ..... ~(NN)} (2,1) 

with the discrete topology. Define the transformation I (N) as 

N 
I ( N ) ( / A ) =  E P ( A I N ) )  6~IN)' /2e"r (2 .2 )  

t = l  

We consider I(U)(p) as a measure on ~e(g) as well as a measure on ~ ,  
denoting it with the same symbol. Define 

~,(o~) = l(m(2o) (2.3) 

~(N) (N) ~(N) Q (4; , , j  , {~N)}, {~IN)})=Q(~IN), ~J~(N)' A~ N), AI N)) (2.4) 

and 

where 2o and Q are the initial value and the collision kernel, respectively, 
of the Boltzmann equation (1.6). 

On J [ ( ~ ) ,  we consider the bounded Lipschitz metric (cf. ref. 4, p. 150) 

/~,,/~2 e ~ ' ( ~ )  (2.5) ~ ( ~ , , ~ 2 ) =  sup I<~o, ~ ) 1  - <~o, ~2)1, 
g) ~ BIYr ): IltPllL ~< 1 

where 

and 

II~0'lIz. = max ( s u p  [r sup 
kxE . -  ~ x, y ~ ..~ x ~ v  

I q~(x) - q~(Y)l 
(2.6) ;V,)5 ) 

(~o, . )  = I~ ~o(y)u(dy), q~ e B ( ~ ) ,  p e ~,(~e)  (2.7) 
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T h e o r e m  2.1. Let plm(t), i =  1 ..... N, be the solution of the discrete 
velocity model (1.11)-(1.13) corresponding to ~eIN), ~tOm ' and OIm defined 
in (2.1), (2.3), and (2.4), and let ~tm(t) be the measure-valued function 
defined as 

N 

~ul(t) = ~ P f m ( t )  6r 
i = l  

Suppose 

lim max 
N ~ e x ~  i : z l l N ) c ~ K ~  

where diam(F) = sup,. ;.~ r r (x ,  y ) ,  F c :~. 
Let the kernel Q satisfy (1.3)-(1.5) and 

diam(J(N)~, i , =  0, V compact K c  ~ (2.8) 

~ - I ~  [~o(5,) + q~(52)] Q( , -, dS, ,  dzD e C ( ~  x ~' ) ,  Vcp e C(.~')(2.9) 

Then 

lim sup Q()~(t),21N}(t))=O, V T > 0  
N ~ co O <~ t <~ T 

where 2(0 is the solution of the Boltzmann equation (1.6). 

Remark 2.2. Consider the particular case (1.7), (1.8). Assumptions 
(1.3)-(1.5) and (2.9) are fulfilled if the function B ( v , ,  v2, e) is continuous in 
(v~, v2) and satisfies 

B(v,,v2, e)~Bmax(e), V~) l ,  V2 e ~i~ 3 , V e  ~ ~.,Q 92 

where S.~2 B , , a x ( e ) d e <  ~ .  Thus, a truncation of the collision kernel is 
necessary in most applications [e.g., B ( v ~ , v z ,  e ) = l ( e ,  v z - v ~ ) l ,  in the 
hard-sphere case]. 

To prepare the proof of Theorem 2.1, we describe the representation of 
the solution of Eq. (1.6) in form of Wild's s u m .  (14 ,8 , t l ' t )  Using assumption 
(1.5), we introduce a kernel 

Qmax(Zl, z2, FI, F2) 

= Q(z  I , z 2, F 1 , F2) + [CQ . . . .  _ Q(Zl ' z2 ' .~,  .~e)] 6zt (F,  ) Oz2(F2 ) 

z ~ , z 2 ~ ,  F I , F 2 ~ z  (2.10) 
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Furthermore, we define an operator Kmax: ,///(,,~e,) X ,A/(,.~() ~ ,/[[(,,~) as 

Kmax(~,,/-~2 )(F) 

= ~:z l.z [Qmax(Z" zz' F' ~)  + Qm"x(Z" Z2' Y{' F) ] #'(dz') l~z(dz2) 

#1, ~z e ,///(Y), F e ~ .  (2.11) 

We note that, with the above notations, Eq. (1.6) takes the form 

d 
dt (q~' 2( t ) )  = (r Kmax(J.(t), ).(t))) - 2 C Q  . . . .  2o(.~')(q), 2(t)) ,  2(0)=20 

It is easy to check that there is a unique solution of Eq. (1.6). This solution 
is represented in the form 

oo 

2 ( 0 =  ~ e-C~176 t~ [0, oO) (2.12) 
k = l  

where 

1 k 
vt=) .  o, vk+t--co k ~ Km.x(Vi, V~+l_i), k>~l (2.13) 

i = 1  

and 

Co = 2CQ . . . .  2o(~)  (2.14) 

We assume 2o(Y')> 0, to avoid trivialities. One easily shows by induction 
on k that 

vk(~) = 2o(..~'), Vk = 1, 2 .... (2.15) 

The series (2.12) converges in the total variation norm. 
The Wild sum representation (2.12)-(2.14) shows rather explicitly how 

the solution 2(t) depends on the objects Y', 2o, and Q that determine 
Eq. (1.6). First we study the stability of the solution with respect to these 
objects. 

Let (y,(U~) be a sequence of subspaces of Y' endowed with the relative 
topology. Note that any measure/t  on ~ l m  has a natural extension/~ on 

defined as 

I~(F)=p(F~ff~m), F ~  
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Let, for N =  1, 2 ..... 2~oN) ~ Jt'(.~ '(m) and Q(m be a kernel having the proper- 
ties (1.3), (1.4) with 0~ replaced by .Z (m. Assume that (1.5) holds uniformly 
in N, namely 

Q(N)(Zl, Z2 ' ~(IN), .~e(N)) ~< CQ . . . . .  VzI, z2 E ~(N),  V N  = 1, 2 .... 

(2.16) 

Let K~)x be defined in analogy with (2.11), and let k~u~(/~] m, p~z m) denote 
~ u )  t. ~u) , ~m~ where/~m,/l~m ~ j C ( ~ m ) .  the extension of the measure "'m,x~'~ ,/~2 J, 

Finally, let 2~m(t) denote the solution of Eq. (1.6) corresponding to 
( ~ m ,  2~o m, QVV)). 

t e m m a  2.3. Suppose (2.16) and 

lim ,~t[O m r, ~N) #~m), K m a x ( ~ l ,  , / /2 ) )  = 0 (2.17) 
g ~ o o  

for any sequences/~]m, /~ul~ ~ / ( ~ m )  and measures /1~,/~2~ J / / (~ )  such 
that 

lim 0(/Jl m,/~) =0,  i =  1, 2 (2.18) 
g ~ , T z  

If 

lim Q(~.tom, 20) = 0 (2.19) 
N ~ o 5  

then 

lim sup Q(2~m(t), 2(0) = 0, VT> 0 
N ~  O<~t<~T 

where 2(0 is the solution of the Boltzmann equation (1.6). 

ProoL Comparing the Wild sum representations (2.12)-(2.14) of 2(t) 
and 21re(t), respectively, one obtains 

sup O(2tm(t),  2(0) 
O<~t<~ T 

~< ~ sup sup [ e - C ~ 1 7 6  
k = l  O<~t<~ T II~oll/.~<l 

- e -  c~oN"( I -- e -  d~ k- j  (r f~m>l (2.20) 

where 

1 k 
~(N) __ ] ( N )  ~t(N) 

1 - '~o  , _ ~. K~U) iv~N) ,,(u) - i ) ,  k>~l  (2.21) 
" k + l  C ( o N ) k i = l  max'~ i , ' k + l  
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and 

Cto m =  2Co . . . .  "~ (oN)('~(N) ) (2.22) 

The series on the right-hand side of (2.20) has a majorant  uniformly in N. 
This follows from (2.22), (2.15), and the fact that 

lim 2~om(.~ cm) = 2o(~)  (2.23) 

which is a consequence of (2.19). Thus, it is sufficient to prove 

lim s~ m = 0 ,  V k = l ,  2 .... 
N~oo 

where s~ m denotes the elements of the series on the right-hand side of 
(2.20). One obtains 

s~ N' <~ o(v~, ~') 
+ sup 2~om(.~ Ira) sup 

N O<~t<~T 
[e -"~ 1 - e - co,)k - 1 _ e - c~0~"( 1 - e - c~~ - '1 

(2.24) 

The second term on the right-hand side of (2.24) tends to zero as N --, 0% since 
the sequence of functions exp( - C~o u) t) [ 1 - exp( - Cto m t ) ] k -  l is equicon- 
tinuous on [0, T]  and tends to the function exp( - Co t) [ 1 - exp( - Co t)] k - ~, 
for each t s  [0, T] ,  because of (2.22) and (2.23). Thus, it remains to show 
that 

lira r f ~ m ) = 0 ,  Vk=  I, 2 .... (2.25) 
N~oo 

This is done by induction on k. For  k =  1, (2.25) follows directly from 
(2.19). Considering the definitions (2.13) and (2.21) of v,+~ and �9 Vk+l,  
respectively, as well as (2.11), (2.15), and (2.14), shows that 

d(N} ~ 1 ~. Q(Kmax(l)i ' V k + l - i ) '  ~(N}i'~'{N)''max''/ , Vk+'(N)' i ) ) 1  O(vk+l, "k+l)<<'Cok i=l 

C~O m 
+ 1 - - - -  2t0U)(~ ~ (2.26) 

CO I 

The second term on the right-hand side of (2.26) tends to zero as N--* oo, 
because of (2.22) and (2.23). The first term tends to zero, because of the 
induction hypothesis and assumption (2.17), (2.18). I 
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The next two lemmas prepare the application of Lemma 2.3 to the 
special sequence (~tm, ~o,V), Q(,v))defined in (2.1), (2.3), (2.4). 

L e m m a  2.4. Let the kernel Q satisfy (1.3)-(1.5) and (2.9). 
Then the operator K,,ax defined in (2.11) is continuous with respect to 

weak convergence. 

Proof. One obtains from (2.11) and (2.10) that 

<~p, K~.~(,uj, P2)> 

=f~f&v{f~L~.[~O'Zl)~l-~O'Z2)]Qmax'Zl,Z2, dzl,dz2)}]'ll(dZl)l'12(Z2) 

+ [C  o . . . .  - Q(zt ,  z2, ..~r, .~)] [tp(z,) + tp(zz)]} p , (az , )  #2(dzz) 

and the assertion follows. II 

l . emma 2.5. Suppose assumption 
p ~ ~/r and limN_ ~ Q(p(NI, p) = 0. Then 

(2.8) is fulfilled. Let / ~ ( N )  

lim Q(I(N)(I~(u)), p) = 0 

where I ~m is defined in (2.2). 

Proof. The triangle inequality shows that it is sufficient to prove 

lim o(l(N)(#(N)), p(U))=0 (2.27) 
N ~ o = ,  

Let K c  &v be a compact set. Taking into account definitions (2.5)-(2.7), we 
obtain 

sup I<cp, I(N)(p(Ot)> -- <~, p(N)>I 
II 'PlIL ~ I 

IN~ ~ < 1  i:zllNl~K=~ i I NI 
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~< sup ~ [" I(P(z)- (p(~Im)l 12(N)(dz) 
II~,llt ~< I i:zllNJ~K~ Jzfl 'v) 

+ ~. 212{N}(zl ~ m ) 
i:,dlN}c~ K = !~5 

~<( max diam(A~m)) la{u ' (~)+2~'N ' (~ \K)  (2.28) 

Assertion (2.27) follows now from (2.28), assumption (2.8), and the tight- 
ness of the sequence (p(N)). i 

Proof of Theorem 2.1. In order to apply Lemma 2.3, we check 
conditions (2.16)-(2.19). Condition (2.16) follows directly from the defini- 
tion (2.4) and assumption (1.5). Condition (2.19) is a particular case of 
Lemma 2.5, because of (2.3). Finally, we note that 

KiN} ( . I N )  {N} 
r n a x , e " l  , 122 )=l"{N'(Kmax(121N), 12{2N))) 

where 12]N), 12{2U)e ~,(.~,{N)), because of (2.4). Thus, condition (2.17), (2.18) 
follows from Lemma 2.5 provided that 

lim O(Km~x(12]u), " {u)), ,u 2 K m a x ( 1 2  1 , 12-,) ) --- 0 
N ~ o o  

if 

lira O(ta~ N}, kli)=0, i =  t, 2 
N ~ t x }  

This is a consequence o Lemma 2.4 and assumptions (1.5) and (2.9). II 

3. R A N D O M  M A S S  FLOW AND DISCRETE 
VELOCITY MODELS 

We introduce a Markov process Z ( t ) =  (glN'~)(t))~u=m with the state 
space I-0, Cg . . . .  ]iv, where Cg . . . .  > 0, and the infinitesimal generator 

N 

a'(4})(_~)= ~ D{N.r)(~,i,j,k,l)[~(J{U.~)(2, i , j , k , I ) ) - f b (~ ) ]  (3.1) 
i,j.k.l~ 

where z=(g~ ." ,gN) ,  y>~l is a real number, and q} is a bounded 
measurable function on the state space. The mapping j{N,r)is a jump trans- 
formation defined as 

[J(N'~')(5, i, j, k, 1)],,, = g,, + G{N'~')(L i, .A k, l ) [  ~l k. ,n + ~b /. m - -  ~l i . , .  - -  q l j . , , , ]  

(3.2) 

822/78/5-6-24 
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where 

~bi.,,=O, i # m ,  ~ i . i=l ,  i , m = l  ..... N (3.3) 

and G (jr'r) is a function governing the weight transfer. We assume 

~'min(g;, gj) if i # j  (3.4) 
G(N'~)(~, i, j, k, l) <~ ~�89 if i = j  

where ~= (g~ ..... gu) and i, j, k, 1= 1 ..... N, so that the components of the 
process remain positive. Note that mass is preserved, i.e., 

N N 

Z glU'r)(t) = Z glN'r)(0), Vt > 0 
i =  1 i =  1 

The function D (u'r), expressing the intensity of the jumps, is assumed to be 
measurable and bounded in ~?. 

The process Z(t)  is a jump process, which models a random mass 
flow. The waiting time between successive jumps has an exponential dis- 
tribution with a parameter which is determined by the function D (u'r). 
Each jump is characterized by random indices i, .L k,/. During the jump, a 
part of the weights g;, gj, which is determined by the funtion G cu';'), is 
transferred to the weights gk, g~- 

T h e o r e m  3.1. Let pl.'v)(t), i =  1 ..... N, t~>0, be the solution to a 
discrete velocity model ( 1.11 )-( 1.13 ). 

Let the parameters D (u'~') and G (N'~) of the stochastic process Z(t)  
be related to the parameter Q(m of the discrete velocity model via the 
condition 

D(u'Y)(~, i, j, k, l) G(N'~)(~, i,j, k, l) Im (u) ;:(m = Q  (~  , {~N)},{r 
",~j 

VT~>I, V-~= (gl ..... gu), Vi,.Lk, l = l  ..... N (3.5) 

Let the funtion G (N'~) satisfy (3.4) and 

1 
G(N'~')(2, i, j, k, l) <~ Cg . . . .  ~, V~/> 1, V,~, Vi, j, k, l = 1 ..... N (3.6) 

If 
N 

lim g ~ Iplm(O)-- gl'V'r)(O)l = 0 (3.7) 
"~, ~ oo i = 1  

then 
N 

lim E sup ~ Iplm(t)-glU.~)(t)[ =0,  
),~o'~ O<~t<~Ti=l  

VT>O 
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Remark 3.2. There are considerable degrees of freedom in the 
choice of the parameters D cN'~) and G cN'~) of the stochastic process Z(t).  
We mention as an example the functions 

and 

1 gigj  G(N'~)(Z, i, j, k, l) - 
~ gi + gj 

DCN'~')(Y, i , j ,  k, l ) = y ( g i + g j )  QCN'(~IN), ~CN) {~U)}, {~lU,}) ".=j , 

where i = (g~ ..... gN) and i,.L k, l =  1 ..... N. Obviously, conditions (3.4)-(3.6) 
are fulfilled for the above functions. 

R e m a r k  3.3. The dependence of the functions D cN'~) and G cN'~) on 
the parameter y may be rather general provided that conditions (3.4)-(3.6) 
are satisfied. 

The effect of y becoming large can be described as follows. The part of 
the weights which is transferred during each jump decreases according to 
condition (3.6). On the other hand, the intensity function D cN'~ increases 
according to condition (3.5), and so does the parameter of the waiting time 
distribution. Thus, when ~, becomes large, the mean number of jumps on a 
given time interval increases, while the amount of weight transfer during 
each jump decreases. 

Consider the example given in Remark 3.2. In the particular case 

i N )  ( N )  Q (~i , cjN), ~r ~ tN))=cons t  = CcN) 

the parameter of the waiting time distribution is 

N N 

D(N'e)(2, i, j, k, 1)= ), ~ (gi + gi) c(N)= Tc(N)2NJ'(oN)("~(N)) 
i,.Lk, l = l  i , j = l  

so that the expected value of the waiting time between two jumps is 
proportional to 1/7. 

Proof  of  Theorem 3. I. We use the following martingale representa- 
tion for Marl~ov processes (cf., e.g., ref. 4, Chapter4, Proposition 1.7). 
Let �9 be a function from the domain ~(A)  of the generator s~ t (i.e., an 
arbitrary bounded measurable function in our case). Then 

�9 (Z( t ) )  = ~(Z(0))  + ~ ( ~ ) ( Z ( s ) )  ds + M( t )  (3.8) 
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where M(t) is a martingale. Moreover,  if ~ 2 E ~ ( a r  then 

E[M( t ) ]  z = E f~ [ ~ r  2qs~C(q~)](Z(s)) ds (3.9) 

We will apply (3.8), (3.9) to the process Z(t) with the generator (3.1). 
Consider a function of the form 

N 

~(~) = ~ g~q9i, ~-= (g~ ..... gN) (3.10) 

where ~o ~ ~N is a fixed vector. Notice that 

q)(jCN.r)(;?, i,j, k, l))=q~(5)+G(N'r)(Z, i,j, k,/)E(pk + q)z-- q)~-- r (3.11) 

according to (3.2), (3.3). Thus, 

N 
~(~)(~) = 

i . j , k , l = l  

N 

= E 
i . j , k , l = l  

D(N'~'}(Z, i, _L k, 1) GINa'}(Z, i, j, k, l)E ~o k -t- qgl- q~i- qgj] 

(N) (N) ~(N) Q (r ,~ j  , { r162  

(3.12) 

according to assumption (3.5). It follows from (3.11) that 

qSz(J(Na')(& i, j, k, l)) 

= q~2(~) + 2qb(e) G(N'~')(5, i, ~h k, l) 

x [r + q~t- q~i- Cpj] + [G(N'~')(L i, j, k, 0 ]  2 [q~k + O I -  ~0i- (pj]2 

and, consequently, 

d(~b2)(Y) = 2q~(-) ~r 
N 

+ ~ D(N'r)(- ~, i, L k, l)[GIU'r)(2, i, j, k, 0 ]  2 
i , j ,k , l= 1 

x [q~k + ~0~-- ~Oi-- ~0i] 2 (3.13) 

From (3.13), (3.5), and (3.6), we obtain the estimates 

I~r - 2q~(5) ~r 
N 

~< 16max [<pi] ~. Q(NI(~i , ( N ) ? ( N ]  [ ~ ( N ) ' I  { ~ N )  })gi gjG(N'r)(Y,i,j,k, l) "~j , ~ k  J', 
i i , j . k . l= ] 

<~16maxlq~ilCgma, 1 ( _ _ ~ ) 2  i , ~ CQINI.max gj 
i 1 
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and, using (3.9), 

N2I. C 33 1 E[M(t)]z<~ 16max Iq~il L g . . . . .  --CQIN) . . . .  t (3.14) 
i y 

Using the vectors q~i'l=~b,,.i, m, i =  1 ..... N, where the symbols ~b,,,,i are 
defined in (3.3), one obtains from (3.8), (3.10), and (3.12) 

t N pt 
~(N.'t')l.~ __ (N,y) | ~;,,, t ' J -g , , ,  (0 )+  ~ [~,.,.k+~b,,,.t--O,,,,i--~',,,.j] 

I0 i,j,k,l= 1 

( N )  (N)  ~ : (N)  x Q (~i , -j  , {~(ku)}, {~N)}) gtN.>)(S )gju,,)(s ) ds + M,,,(t) 
(3.15) 

Comparing (3.15) with (1.9), one obtains the estimate 

ip~,)( t )_ (N.~) g,,, (t)l 

Ip,,, (0) -  gl,,u'r)(0)l 
t N 

+ [_ 4 Co,N,max2NCg . . . .  2 
i = 1  

( N )  (N.) , )  p, ( s ) - g ,  (s)lds+lM,,(t)l 

(3.16) 

m (3.16) and applying Gronwall's Taking the sum with respect to m 
inequality, one obtains 

N 

~. lp~N)(t)-- glN.~')(t)l 
i = 1  

~< exp(8Co,v) . . . .  Cg . . . .  NZt) 

I N )  ( N , y )  • IP, (O)--g, (0)1 + ~ [M,(t)l 
i 1 i = 1  

After taking the supremum with respect to t ~ [0, T] and the mathematical 
expectation, the assertion of Theorem 3.1 follows from (3.14), (3.7), and the 
martingale inequality. II 

4. C O N C L U D I N G  R E M A R K S  

Theorem 2.1 provides a rather general solution to the problem of 
approximating the Boltzmann equation (1.6) by discrete velocity models. 
This result was possible, since we have neglected the properties of con- 
servation of momentum and energy. These properties are fulfilled only 
approximately for the discrete velocity model defined in (2.1)-(2.4). The 
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difficulties connec ted  with the "closure p r o b l e m "  for discrete velocity models  
were discussed in detai l  in ref. 5. We  refer to refs. 7 and  9 conce rn ing  the 
cons t ruc t ion  of discrete velocity models  possessing conse rva t ion  propert ies .  

Theo rem 3.1 provides  a s imple s tochast ic  process a p p r o x i m a t i n g  the 
so lu t ion  to a discrete velocity model .  This  process can  be appl ied  for solving 
a discrete velocity mode l  numer ica l ly .  To  this end,  the exponen t i a l ly  dis- 
t r ibu ted  wai t ing  t ime be tween the j u m p s  should  be a p p r o x i m a t e d  in an  
appropr i a t e  way. Such a p rocedure  was discussed in some detai l  in ref. 13, 
where Bird's  D S M C  a lgor i thm was treated. 

The  app l i ca t ion  of the numer ica l  a lgor i thm based on  T h e o r e m  3.1 to 
the spat ia l ly  i n h o m o g e n e o u s  B o l t z m a n n  equa t i on  is s t ra ight forward  if one  
applies the usua l  t echn ique  of spl i t t ing the free flow a n d  the col l is ion 
s imula t ion .  However ,  as far as numer ica l  app l ica t ions  are concerned ,  
conse rva t ion  proper t ies  of the a lgor i thm become essential.  
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